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Abstract—In recent years the most popular video-based human
action recognition methods rely on extracting feature represen-
tations using Convolutional Neural Networks (CNN) and then
using these representations to classify actions. In this work, we
propose a fast and accurate video representation that is derived
from the motion-salient region (MSR), which represents features
most useful for action labeling. By improving a well-performed
foreground detection technique, the region of interest (ROI)
corresponding to actors in the foreground in both the appearance
and the motion field can be detected under various realistic
challenges. Furthermore, we propose a complementary motion
salient measure to select a secondary ROI – the major moving
part of the human. Accordingly, a MSR-based CNN descriptor
(MSR-CNN) is formulated to recognize human action, where
the descriptor incorporates appearance and motion features
along with tracks of MSR. The computation can be efficiently
implemented due to two characteristics: 1) only part of the RGB
image and the motion field need to be processed; 2) less data
is used as input for the CNN feature extraction. Comparative
evaluation on JHMDB and UCF Sports datasets shows that our
method outperforms the state-of-the-art in both efficiency and
accuracy.

Index Terms—Action recognition; Motion salient regions; Con-
volutional Neural Networks

I. INTRODUCTION

The amount of video data available is experiencing explo-
sive growth due to ubiquity of digital recording devices and
popularity of video sharing web sites. Human action recog-
nition in video, which is one of the long-standing research
topics in computer vision, has been extensively investigated
in recent years [1], [4]. In general, action recognition can
be considered as a two-step procedure: feature extraction and
subsequent classification using these features.

Video-based action recognition is a challenging problem,
with many difficulties yet to be resolved. The challenges come
from three main aspects [4]: (1) Intra-class (variations within
action classes) and inter-class (ambiguities between action
classes) variations; (2) Environment and recording settings;
and (3) Temporal variations. In this work, we concern how
to accurately detect the person and his/her primary moving
body part under various complicated conditions, and subse-
quently localize them. This is a promising way to improve
video representation, which eventually determines the result of

action recognition, since the performance of action recognition
heavily depends on video representation.

Noticeably, after the deep convolutional neural networks
(CNN) was applied in [8] to achieve remarkable success in
static image classification, extending CNN to extract features
for video representations has been widely studied for action
recognition [1], [2], [3], [12]. Human actions in video can
naturally be viewed as 3D spatio-temporal signals, which
are characterized by the temporal evolution of visual ap-
pearance governed by motion [10]. In consistence with this
characteristic, the approaches used to learn spatiotemporal
features to represent spatially and temporally coupled action
patterns are exploited. One representative work is [11], which
presents two CNNs: one spatial CNN, in which the appearance
representations are learned from RGB inputs, and one motion
CNN, in which the motion representations are learned from
pre-computed optical flow. These two representations are
complementary, and better performance was obtained when
combining them. We adopt the two-stream network, and
improve it by proposing a technique based on motion-salient
region (MSR).

In general, features used for human detection belong to
global representations, which encode the region of interest
(ROI) of a human as a whole. The ROI is normally extracted
by leveraging background subtraction or tracking [4]. The
global representations depend on the performance of localiza-
tion, background subtraction or tracking. Furthermore, they are
sensitive to variations in viewpoint, background motion, noise
and illumination changes. Recently, [2] applied the selective
search scheme [7] to produce approximately 2K regions in
each frame, and discard the regions that are void of motion
according to a motion salient measure (MSM) based on optical
flow. However, this method has three drawbacks. First, there
is no good method to select the motion salient threshold α,
which directly affects the selected regions that are salient in
shape and motion, and hence affecting the final accuracy and
efficiency of the approach. Second, some subtle actions with
small motion could be missed. Third, the selected regions are
not necessarily spatially coherent.

On the other hand, Cheron et al. [1] obtained the repre-
sentations derived from human pose. In particular, they used
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positions of the estimated body joints to define informative
regions. The regions corresponding to four body parts – right
hand, left hand, upper body and full body, and plus the full
image in both the RGB image and the flow field are cropped.
This method faces two main problems though. First, human-
pose estimation is a difficult task. Pose-estimators should be
avoided for action recognition, at least until the performance
of the pose estimation being enhanced [5]. Second, using
five inputs for CNN feature extraction leads to extensive
computation that may not be completely necessary.

Inspired by the above analysis and the current advances
in the domain of moving object detection, we formulate an
action descriptor based on the identified motion-salient re-
gions (MSRs). The Block-sparse Robust Principal Component
Analysis (B-RPCA) technique [13] is employed to detect
the human. The B-RPCA method addresses various realistic
challenges, e.g., background motions, illumination changes,
poor image quality under low light, noise and camouflage, in a
unified framework. Not only the foreground individuals can be
accurately extracted, but also the implementation is efficient.
In addition, since a motion saliency estimation step is applied
to compute the support of the foreground regions, spatial
coherence is imposed on these target regions. To improve the
performance of the B-RPCA technique, we add a velocity
angle measure to reduce errors on the consistency of the
motion direction. Normally, for the current widely-used action
recognition video datasets, the detected MSR in each frame is
the full human. According to the obtained motion information
of the whole human, we propose another MSM to extract
one primary part of the human body, where the movement
is most distinctive. The secondary MSR can convey highly
discriminative information, which is complementary to the
first detected MSR of the whole human. Replacing the four
body parts of [1] with our two MSRs, the proposed MSR-
based CNN (MSR-CNN) outperforms the closely related state-
of-the-art methods: the pose-based CNN (P-CNN), and the
regions of interest based spatial- and motion-CNN [2] on both
evaluation datasets.

II. MSR-CNN: CNN FEATURES EXTRACTION FROM
MSRS

From the state-of-the-art work [1], [2], [16] and our analysis,
it is clear that selecting informative regions for CNN features
extraction is a effective way to modify the accuracy of action
recognition in video. Fig. 1 and Fig. 2 outline the framework of
our MSR-CNN schematically. We detect two complementary
MSRs in terms of the improved B-RPCA technique and a
MSM separately. As shown in Fig. 1, P1 and P2 are two
extracted MSRs. P3 (see Fig. 2) is a 224 × 224 patch which
is obtained by resizing the input full image or the full flow
field. This method significant decreases the number of regions
need to be processed and allows for faster computation. The
two CNNs of [1] are introduced to operate on the MSRs of
the RGB image and the optical flow respectively, and corre-
spondingly producing two representations – the appearance-
based CNN representation and the motion-based representa-

Fig. 1. Input data processing: MSRs extraction and resizing. (a) operation on
the RGB input image; (b) operation on the motion field. (P1 (patch1) denotes
one MSR – the human body; P2 (patch2) denotes the secondary MSR –
motion salient body part)

Fig. 2. The framework of our MSR-CNN. From left to right: The resized
extracted three patches of each frame. The appearance descriptor of the spatial-
CNN and the flow descriptor of the motion-CNN fr

t is respectively captured
per frame t and per region r. Static frame descriptors fr

t are aggregated across
all the frames according to min and max to get the video descriptor vrsta.
Temporal differences of fr

t are aggregated to vrdyn in the same way. Video
descriptors are normalized and concatenated over patches r and aggregation
schemes into appearance features vapp and flow features vof . The final MSR-
CNN feature representation is the concatenation of vapp and vof . At last, a
linear SVM classifier is carried out for action classification.

tion. These two representations are captured at each frame and
then concatenated over time to form a video representation. At
last, the action classification is performed with a linear SVM
on the extracted video representation (see Fig. 2).

A. CNN Descriptors

To capture MSR-CNN features, we adopt the same architec-
ture and training procedure as [1]. We apply the MatConvNet
toolbox [17] for the convolutional networks. Below, a brief
description of our training process is given.

1) Step 1: Processing the input data: To construct a
motion-CNN, the optical flow is first calculated for each
successive pair of frames according to the method of [18].
Optical flow [19], [20], which describes the pattern of apparent
motion of objects in a scene, is of critical importance for
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action recognition in video. The x-component (i.e. u), the y-
component (i.e. v) and the magnitude of the flow are rescaled
to the range of [0, 255] like the input RGB images in the
following way: [û, v̂] = γ[u, v] + 128, where γ = 16 is the
rescale factor. The values smaller than 0 and larger than 255
are discarded. Then, the three components of every flow are
stacked to form a 3D image as the input for the motion-
CNN. During training, for each selected MSR, we resize it to
224 × 224 to fit the CNN input layer. To construct a spatial-
CNN, for each selected MSR in the RGB image, we also resize
it to 224× 224.

2) Step 2: Selecting/Training CNN model: Two different
CNNs with an identical architecture (similar to [8], with
5 convolutional and 3 fully-connected layers) are employed
to obtain the representations of the MSRs on appearance
and motion field respectively. The public available model
”VGG-f” [21], which is a pre-trained model on the ImageNet
challenge database [22], is chosen for spatial-CNN. The state-
of-the-art motion network [2], which has been pre-trained on
the UCF101 dataset [23], is selected for motion-CNN.

3) Step 3: Aggregation: (1) Formulating a video descriptor
by aggregating all frame descriptor frt (r represents the MSR, t
denotes the frame at time t). In particular, the frame descriptor
frt contains n = 4096 values which is the output of the second
fully-connected layer.

(2) Formulating the min and max aggregation by calculat-
ing the minimum and maximum values for each descriptor
dimension i over T frames:

mi = min
1≤t≤T

frt (i)

Mi = max
1≤t≤T

frt (i)
(1)

(3) Formulating the static video descriptor vr
sta by concate-

nating the time-aggregated frame descriptors:

vrsta = [m1, . . . ,mn,M1, . . . ,Mn]
T (2)

(4) Formulating the dynamic video descriptor vr
dyn by

concatenating the minimum 4mi and maximum 4mi aggre-
gations of 4frt

vr
dyn = [4m1, . . . ,4mn,4M1, . . . ,4Mn]

T (3)

where 4frt = frt+4t − frt , 4t = 4 is the time interval.
(5) Formulating a spatio-temporal MSR-CNN descriptor

by aggregating all the normalized video descriptors for both
appearance and motion of all MSRs and different aggregation
strategies.

4) Step 4: Classification: The actions are categorized by
using a linear SVM classifier trained on the spatio-temporal
representations produced by our MSR-CNN.

III. DETECTION OF MOTION-SALIENT REGIONS

Detecting moving objects is an extensively investigated
subject [24] and significant progresses have been achieved in
the past few years. Most existing techniques may still face
some challenges with real data from complicated conditions.
In this work, the B-RPCA technique [13] is employed for its

overall good performance. Furthermore, an improved B-RPCA
is presented to detect the foreground human in the input image.
Besides, a MSM is exploited to extract one MSR in the human
body detected from the previous step.

A. The B-RPCA Method

To deal with the difficulties in detecting foreground mov-
ing objects, Gao et al. [13] imposed few constraints to the
background. The background can be identified according to
a low-rank conditional matrix. Mathematically, the observed
video frames can be considered as a matrix M, which is a
sum of a low-rank matrix L that denotes the background, and
a sparse outlier matrix S that consists of the moving objects.
Besides, [13] introduced a feedback scheme, and proposed
a B-RPCA technique which consists a hierarchical two-pass
process to handle the decomposition problem. Three major
steps are carried out, which are summarized below to facilitate
the discussion of our improvement later (Sect. III-B)

1) Step 1: First-pass RPCA: In this step, a first-pass RPCA
in a sub-sampled resolution is applied to fast detect the likely
regions of foreground:

min
L,S
‖ L ‖∗ +λ ‖ S ‖1, s.t. M = L + S (4)

where ‖ L ‖∗ denotes the nuclear norm of the background
matrix L, λ is a regularizing parameter which constraints
no foreground regions will be missed. The appropriate value
λ = 1/

√
max(m,n). Equation (4) is a convex optimization

problem, and it can be solved by applying the inexact aug-
mented Lagrange multiplier (ALM) [27]. Through this first-
pass RPCA, all outliers can be identified and stored in the
outlier matrix S.

2) Step 2: Motion Saliency Estimation: A motion con-
sistency strategy is used to assess the motion saliency of
the detected foreground regions and the probability of a
block containing the moving objects. Pixels within the blocks
captured in the first round of RPCA are tracked by optical flow.
After tracking, dense point trajectories are extracted. Firstly,
the short trajectories, like k − j <= 10 (j, k represent the
frame index, j, k ∈ [1, n] rely on the trajectory l), are removed.
Secondly, [26] is applied to estimate the motion saliency of
the remaining trajectories according to the consistency of the
motion direction. Two benefits are achieved due to the motion
saliency estimation: (1) the foreground objects moving in a
slow but consistent manner can be better identified; (2) the
small local motion comes from inconsistent motions of the
background can be further discard. Most of the non-stationary
background motions identified and stored in the outlier matrix
S in the first step, are filtered off or suppressed.

3) Step 3: Second-pass RPCA: In this step, the λ value
is reset according to the motion saliency, which ensures the
changes derived from the foreground motion can be com-
pletely transferred to the outlier matrix S and avoids to leave
any bad presence in the background. The second pass RPCA
is implemented as:

min
L,S
‖ L ‖∗ +

∑
i

λi ‖ Pi(S) ‖F , s.t. M = L + S (5)
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where ‖ · ‖F denotes the Frobenius norm of a matrix. Pi is
an operator which unstacks every column of S and returns a
matrix that represents block i. The inexact ALM algorithm is
emplyed again to solve the equation (5).

B. The Improved B-RPCA Method

The motion saliency estimation in [13] utilizes the trajectory
length and the motion direction of the point trajectories to
remove the non-stationary background motion. This strategy
is effective to detect the foreground moving objects that keep
moving constantly in the scene. If the object stops occa-
sionally, the foreground object cannot be detected via the B-
RPCA technique due to the Step 2 operation: motion saliency
estimation. Especially for the action recognition datasets, such
as JHMDB, the actors may have little motion for some
intervals of the actions. To overcome such difficulties for the
B-RPCA approach, we propose the following improvements:

1) Relaxing the constraint of the trajectory length to k −
j <= 5. In this way, falsely-removed foreground due to
trajectory length (e.g., when the actor suddenly stops for short
moment) will be significantly reduced. Meanwhile, to avoid
noise arising from the background, we add the motion deriva-
tive constraint similar to MBH [15]. By calculating derivatives
of the optical flow components u and v, the background motion
due to locally-constant camera motion will be excluded.

2) Enhancing the consistency measure of the motion direc-
tion. Not only the negative direction or positive direction of
u and v along the trajectory, but also the direction variation
should be considered. Hence, we add a velocity angle measure
as follows:

4θ=arctan(ut+1/vt+1)−arctan(ut/vt)∈ [−π/4, π/4] (6)

where [u, v] 6= 0. Same as the motion direction consistency
operation, this velocity angle measure is also conducted at
positions where the velocity is no-zero along the trajectory.

3) If ut and vt satisfy either of the following conditions
(Equation 7 or Equation 8), we consider the actor is static
between frame t and frame t+ 1. Then, we only perform the
first Step 1 to detect the actor in the RGB images.

range(ut) < 0.5 ∧ range(mGflow) < 0.5 (7)

or
range(vt) < 0.5 ∧ range(mGflow) < 0.5 (8)

where range(ut) denotes the difference between the maxi-
mum value of ut and the minimum value of ut. mGflow is
the magnitude of the gradients of the optical flow (ut, vt),
mGflow =

√
(ut)2x + (ut)2y + (vt)2x + (vt)2x, 0.5 is an em-

pirically selected threshold and denotes a half pixel distance.

C. Selecting the MSR of the human

As suggested in [1], [2], [16], selecting suitable MSRs of the
actor body is essential, as these body parts are complementary
and are potentially helpful for improving action recognition
when combined in an appropriate manner. Based on the
captured human information of the improved B-RPCA, we

Fig. 3. An outline of our method to select one MSR in the human body.
From Left to Right: the result of step 1 – extracting MSR candidates, the
result of step 2 – discarding the small MSR candidates, and the result of step
3 – selecting the most salient motion region (the red rectangle).

introduce a MSM to select the MSR of the human body, where
the motion is most distinguishable.

The region of the foreground actor body is detected and
localized via the improved B-RPCA. Accordingly, the location
information is useful for identifying other informative body
parts which are discriminative. We employ the following steps.
(See Fig. 3)

1) Extracting MSR candidates from the detected human
body according to a conditional measure defined as:

LabH∧(mGflow>AmGflow)∧(mflow>Amflow) (9)

and

(|u|>Au) ∨ (|v|>Av) (10)

where LabH is the already obtained human body from the last
step. AmGflow is the mean of mGflow. mflow is the magni-
tude of the optical flow flow = (u, v), mflow =

√
u2 + v2.

Amflow is the mean of mflow. Au and Av is the mean of the
horizontal flow u and the vertical flow v.

2) Discarding the small MSR candidates. Different body
parts have different motion patterns. In addition, some back-
ground motion around the human body may be inaccurately
identified by the B-RPCA technique. Due to this implemen-
tation, the incorrectly captured background motions could be
removed once again. The 3th subfigure in Fig. 3 displays that
most of the outliers are suppressed.

MSR(i) > τ (11)

where i is the index of MSR candidates. τ is a threshold. If
the area of one candidate MSR(i) is smaller than τ , it will
be removed. In this paper we set τ = 10× 10 experimentally.

3) Capturing the first two largest MSR candidates. We adopt
the simple MSM as [2] to select the final MSR by comparing
the normalized magnitude of the optical flow between these
two candidates:

flowm(Ri) =
1

|Ri|
∑
j∈Ri

flow(j) (12)

where flowm(Ri) is the normalized magnitude of the optical
flow in the i-th MSR candidate, j is the index of the optical
flow. The MSR candidate with larger flowm(Ri) will be
finally selected.
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TABLE I
RESULTS (% MEAN AVERAGE PRECISION (MAP)) OF THE

SPATIAL-MOTION MSR BASED CNN ON THE UCF SPORT DATASET.

Patches Div. Golf Kick. Lift. Rid. Run S.Board. Swing1 Swing2 Walk mAP

P1 100 100 100 100 100 63.89 0 87.67 100 100 85.16
P2 100 100 52.50 100 100 63.89 0 100 100 100 81.64
P3 100 100 52.50 100 100 63.89 63.89 63.89 100 100 84.42
P1+P3 100 100 100 100 100 29.17 52.50 63.89 100 100 84.56
P2+P3 100 100 100 100 100 29.17 25.0 100 100 100 85.42
All 100 100 100 100 100 63.89 100 87.67 100 100 96.39

IV. EXPERIMENTS

In this section, we evaluate our MSR-CNN method by
testing it on two challenging datasets – UCF Sports [14] and
JHMDB [6], and compare it with the state-of-the-art algo-
rithms. In particular, in each dataset, we assess our method in
two aspects: 1) whether the improved B-RPCA is effective in
detecting the foreground human under complicated situations,
and the proposed MSM can extract the MSR of the body part;
2) whether the extracted secondary MSR is complementary to
the first one, and if it can further enhance the performance.

A. Evaluation on UCF Sports

Fig. 4 shows the two detected MSRs on 6 different action
categories. These actions are operated in various challenging
conditions, such as multiple actors and the displacements are
larger than the object scale (the 1th and 3th subfigures), the
moving area is textureless (the 2th subfigure), occlusion (the
4th subfigure), motion blur (the 5th subfigure) and illumination
changes (the 6th subfigure), our two detectors can successfully
deal with these difficulties.

Table I shows the results of our proposed MSR based
spatial-temporal CNN technique on using different patches.
Comparing the first row and the second row, we can find that
for some sequences, the extracted CNN features from these
two MSRs are different and complementary. Consequently,
extracting these two MSRs are necessary as they have differ-
ent contributions for action recognition. Integrating the three
patches together, significant gain is achieved, where the mAP
is increased from 84.02% (P3) to 96.39% (All).

B. Evaluation on JHMDB

Fig. 5 shows the action detection and localization per-
formance of our improved B-RPCA as well as the MSM.
It is clear that our detectors perform well in complex and
realistic situations. For example, in the 5th subfigure, even
encountering with the extremely motion blur, the human body
and one of his body part are accurately captured.

Table II demonstrates again that different patches play
different significant roles in action recognition, and incorpo-
rating them can further increase the performance to recognize
actions. The results of 71.1% from All outperforms other
approach more than 4% (comparing with the second best result
68.2% of P2+P3).

Table III shows the results of different patches based MSR-
CNN in the accuracy manner. The best result still comes from

TABLE III
RESULTS (% ACCURACY) OF THE SPATIAL-MOTION MSR BASED CNN ON

THE JHMDB DATASET.

P1 P2 P3 P1 + P3 P2 + P3 All

Accuracy(%) 59.79 58.92 60.78 63.76 65.88 66.02

TABLE IV
PERFORMANCE OF OUR MSR-CNN ON THE JHMDB DATASET. WE
COMPARE THE MSR-CNN WITH THE STATE-OF-THE-ART RELATED

METHODS: ACTION TUBES [2] AND POSE-CNN [1].

Methods P-CNN (Without GT) [1] Action Tubes [2] MSR-CNN

Accuracy(%) 61.1 62.5 66.02

All (our proposed MSR-CNN), where the accuracy achieves
to 66.2%.

C. Comparison with the state-of-the-art

In Table IV, we compare our MSR-CNN approach with the
two state-of-the-art algorithms. The accuracy of our method
is about 5% better than Pose-CNN (66.02 vs 61.1), and about
3.5% more accurate than Action Tubes (66.02 vs 62.5). As
we have analyzed in Introduction, compared with Pose-CNN,
which relies on pose estimation, our detectors handle the
difficulties in realistic data without requiring accurate pose
estimation. Our method can extract the moving actor body
as well as one of its primary moving body part precisely.
Compared with Action Tubes, our method outperforms it
due to its three drawbacks that degrade its performance. In
particular, the empirically-selected motion salient threshold α
in Action Tubes is a fixed constant, which is not optimal for
all videos. Not only some fine-scale moving objects would
be removed, but also some large-scale moving objects in
challenging conditions would be incorrectly captured.

Since we focus on extracting complementary motion regions
of the human body and its body parts, we do not experiment
on integrating the hand-crafted IDT features [15] with our
deep-learned MSR-CNN features. The combination can be
easily conducted via fusion, and that can further boost the
performance (Refer to Pose-CNN [1] for more details).

V. CONCLUSIONS

We propose a motion-salient region based convolutional
neural networks (MSR-CNN) for action recognition and local-
ization. The idea is derived from the intrinsic characteristic that
only local motion features in the video contribute to the action
label. By employing the B-RPCA method and improving its
performance in three aspects, the foreground actor can be accu-
rately detected under complex realistic situations. Additionally,
based on the motion information obtained from the improved
B-RPCA, a simple MSM can be used to efficiently extract a
complementary MSR of the human body, which corresponds
to the most discriminative motion part of the body. Therefore,
it should contribute more to the action recognition. Evaluation
on two challenging datasets and comparison with the related
state-of-the-art algorithms demonstrate our method achieves
superior performance on both the task of action recognition
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Fig. 4. Results on UCF Sports. Each column represents an action class. The big rectangle corresponds to the extracted foreground human body via the
Improved B-RPCA method, the small one corresponds to the extracted secondary MSR via the proposed MSM.

TABLE II
RESULTS (% MEAN AVERAGE PRECISION (MAP)) OF THE SPATIAL-MOTION MSR BASED CNN ON THE JHMDB DATASET. THE RESPECTIVE

PERFORMANCE OF P1, P2 AND P3, AND THE COMBINATION PERFORMANCE BY INTEGRATING THEM IN DIFFERENT WAYS ARE SHOWN.

Patches brushhair catch clap climbstairs golf jump kickball pick pour pullup push run shootball shootbow shootgun sit stand wingbaseball throw walk wave mAP

P1 76.6 54.6 63.3 58.5 88.8 43.4 48.0 57.7 87.4 98.8 82.0 55.3 38.6 80.1 60.1 74.8 72.9 63.4 8.9 85.8 57.3 64.6
P2 93.6 54.0 71.9 45.9 80.8 54.1 54.6 61.8 80.8 97.1 93.0 65.6 48.4 70.1 63.7 65.9 69.5 60.6 22.5 64.7 39.2 64.7
P3 66.9 53.1 51.2 65.9 91.3 47.3 55.2 56.3 97.9 100 85.6 52.8 42.4 91.4 72.2 61.4 66.3 32.7 29.2 86.4 46.9 64.4
P1+P3 76.4 56.5 52.1 53.4 91.3 56.6 59.8 56.3 92.6 100 86.8 52.2 47.5 93.1 67.7 59.7 66.4 49.0 16.8 88.0 65.5 66.1
P2+P3 86.0 51.0 65.5 53.4 91.3 57.0 52.3 61.8 92.6 100 87.3 67.0 50.0 91.8 68.0 64.0 65.6 55.5 20.9 88.0 62.9 68.2
All 89.1 47.3 61.3 54.1 91.3 60.1 59.5 69.4 97.6 100 96.0 71.8 50.8 92.1 71.0 65.5 72.9 60.1 40.3 86.9 55.2 71.1

Fig. 5. Results on JHMDB. The big rectangle corresponds to the extracted
foreground human body via the Improved B-RPCA method, the small one
corresponds to the extracted secondary MSR via the proposed MSM.

and localization. In the future, we plan to design more robust
and efficient approaches to extract MSRs, and analyze the
type and number of MSRs that can bring the most significant
contribution to action recognition.
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